博客
关于我
利用随机数种子来使pytorch中的结果可以复现
阅读量:328 次
发布时间:2019-03-04

本文共 376 字,大约阅读时间需要 1 分钟。

 

在神经网络中,参数默认是进行随机初始化的。不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,在pytorch中,通过设置随机数种子也可以达到这么目的。

在百度如何设置随机数种子时,搜到的方法通常是:

SEED = 0torch.manual_seed(SEED)torch.cuda.manual_seed(SEED)

自己在按照这种方法尝试后进行两次训练所得到的loss和误差都不同,结果并没有复现。

也搜过一些方法,比如设置参数:

torch.backends.cudnn.deterministic = True

但是在自己的网络中这样设置并没有用,依然得到不同的结果。

后面偶然在google中搜到有人在设置随机数种子时还加上了np.random.seed(SEED),经过尝试后发现结果是可复现的了。

转载地址:http://kmkh.baihongyu.com/

你可能感兴趣的文章
MTCNN 人脸检测
查看>>
MyEcplise中SpringBoot怎样定制启动banner?
查看>>
MyPython
查看>>
MTD技术介绍
查看>>
MySQL
查看>>
MySQL
查看>>
mysql
查看>>
MTK Android 如何获取系统权限
查看>>
MySQL - 4种基本索引、聚簇索引和非聚索引、索引失效情况、SQL 优化
查看>>
MySQL - ERROR 1406
查看>>
mysql - 视图
查看>>
MySQL - 解读MySQL事务与锁机制
查看>>
mysql 1264_关于mysql 出现 1264 Out of range value for column 错误的解决办法
查看>>
mysql 1593_Linux高可用(HA)之MySQL主从复制中出现1593错误码的低级错误
查看>>
mysql ansi nulls_SET ANSI_NULLS ON SET QUOTED_IDENTIFIER ON 什么意思
查看>>
MySQL Binlog 日志监听与 Spring 集成实战
查看>>
multi-angle cosine and sines
查看>>
Mysql Can't connect to MySQL server
查看>>
mysql case when 乱码_Mysql CASE WHEN 用法
查看>>
Multicast1
查看>>