博客
关于我
利用随机数种子来使pytorch中的结果可以复现
阅读量:328 次
发布时间:2019-03-04

本文共 376 字,大约阅读时间需要 1 分钟。

 

在神经网络中,参数默认是进行随机初始化的。不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,在pytorch中,通过设置随机数种子也可以达到这么目的。

在百度如何设置随机数种子时,搜到的方法通常是:

SEED = 0torch.manual_seed(SEED)torch.cuda.manual_seed(SEED)

自己在按照这种方法尝试后进行两次训练所得到的loss和误差都不同,结果并没有复现。

也搜过一些方法,比如设置参数:

torch.backends.cudnn.deterministic = True

但是在自己的网络中这样设置并没有用,依然得到不同的结果。

后面偶然在google中搜到有人在设置随机数种子时还加上了np.random.seed(SEED),经过尝试后发现结果是可复现的了。

转载地址:http://kmkh.baihongyu.com/

你可能感兴趣的文章
MySQL之字符串函数
查看>>
mysql之常见函数
查看>>
Mysql之性能优化--索引的使用
查看>>
mysql之旅【第一篇】
查看>>
Mysql之索引选择及优化
查看>>
mysql之联合查询UNION
查看>>
mysql之连接查询,多表连接
查看>>
mysql乐观锁总结和实践 - 青葱岁月 - ITeye博客
查看>>
mysql也能注册到eureka_SpringCloud如何向Eureka中进行注册微服务-百度经验
查看>>
mysql乱码
查看>>
Mysql事务。开启事务、脏读、不可重复读、幻读、隔离级别
查看>>
MySQL事务与锁详解
查看>>
MySQL事务原理以及MVCC详解
查看>>
MySQL事务及其特性与锁机制
查看>>
mysql事务理解
查看>>
MySQL事务详解结合MVCC机制的理解
查看>>
MySQL事务隔离级别:读未提交、读已提交、可重复读和串行
查看>>
MySQL事务隔离级别:读未提交、读已提交、可重复读和串行
查看>>
webpack css文件处理
查看>>
mysql二进制包安装和遇到的问题
查看>>