博客
关于我
利用随机数种子来使pytorch中的结果可以复现
阅读量:328 次
发布时间:2019-03-04

本文共 376 字,大约阅读时间需要 1 分钟。

 

在神经网络中,参数默认是进行随机初始化的。不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,在pytorch中,通过设置随机数种子也可以达到这么目的。

在百度如何设置随机数种子时,搜到的方法通常是:

SEED = 0torch.manual_seed(SEED)torch.cuda.manual_seed(SEED)

自己在按照这种方法尝试后进行两次训练所得到的loss和误差都不同,结果并没有复现。

也搜过一些方法,比如设置参数:

torch.backends.cudnn.deterministic = True

但是在自己的网络中这样设置并没有用,依然得到不同的结果。

后面偶然在google中搜到有人在设置随机数种子时还加上了np.random.seed(SEED),经过尝试后发现结果是可复现的了。

转载地址:http://kmkh.baihongyu.com/

你可能感兴趣的文章
multiprocessor(中)
查看>>
mysql CPU使用率过高的一次处理经历
查看>>
Multisim中555定时器使用技巧
查看>>
MySQL CRUD 数据表基础操作实战
查看>>
multisim变压器反馈式_穿过隔离栅供电:认识隔离式直流/ 直流偏置电源
查看>>
mysql csv import meets charset
查看>>
multivariate_normal TypeError: ufunc ‘add‘ output (typecode ‘O‘) could not be coerced to provided……
查看>>
MySQL DBA 数据库优化策略
查看>>
multi_index_container
查看>>
MySQL DBA 进阶知识详解
查看>>
Mura CMS processAsyncObject SQL注入漏洞复现(CVE-2024-32640)
查看>>
Mysql DBA 高级运维学习之路-DQL语句之select知识讲解
查看>>
mysql deadlock found when trying to get lock暴力解决
查看>>
MuseTalk如何生成高质量视频(使用技巧)
查看>>
mutiplemap 总结
查看>>
MySQL DELETE 表别名问题
查看>>
MySQL Error Handling in Stored Procedures---转载
查看>>
MVC 区域功能
查看>>
MySQL FEDERATED 提示
查看>>
mysql generic安装_MySQL 5.6 Generic Binary安装与配置_MySQL
查看>>