博客
关于我
利用随机数种子来使pytorch中的结果可以复现
阅读量:328 次
发布时间:2019-03-04

本文共 376 字,大约阅读时间需要 1 分钟。

 

在神经网络中,参数默认是进行随机初始化的。不同的初始化参数往往会导致不同的结果,当得到比较好的结果时我们通常希望这个结果是可以复现的,在pytorch中,通过设置随机数种子也可以达到这么目的。

在百度如何设置随机数种子时,搜到的方法通常是:

SEED = 0torch.manual_seed(SEED)torch.cuda.manual_seed(SEED)

自己在按照这种方法尝试后进行两次训练所得到的loss和误差都不同,结果并没有复现。

也搜过一些方法,比如设置参数:

torch.backends.cudnn.deterministic = True

但是在自己的网络中这样设置并没有用,依然得到不同的结果。

后面偶然在google中搜到有人在设置随机数种子时还加上了np.random.seed(SEED),经过尝试后发现结果是可复现的了。

转载地址:http://kmkh.baihongyu.com/

你可能感兴趣的文章
MySQL 精选 60 道面试题(含答案)
查看>>
mysql 索引
查看>>
MySQL 索引失效的 15 种场景!
查看>>
MySQL 索引深入解析及优化策略
查看>>
MySQL 索引的面试题总结
查看>>
mysql 索引类型以及创建
查看>>
MySQL 索引连环问题,你能答对几个?
查看>>
Mysql 索引问题集锦
查看>>
Mysql 纵表转换为横表
查看>>
mysql 编译安装 window篇
查看>>
mysql 网络目录_联机目录数据库
查看>>
MySQL 聚簇索引&&二级索引&&辅助索引
查看>>
Mysql 脏页 脏读 脏数据
查看>>
mysql 自增id和UUID做主键性能分析,及最优方案
查看>>
Mysql 自定义函数
查看>>
mysql 行转列 列转行
查看>>
Mysql 表分区
查看>>
mysql 表的操作
查看>>
mysql 视图,视图更新删除
查看>>
MySQL 触发器
查看>>